“香蕉,扔掉!”“车厘子,扔掉!”“西兰花,扔掉!”“这些,这些,还有这些,统统扔掉!”
这一幕经常在零售店上演,听起来像是暴殄天物对吗?但实属不得已而为之。因为这些本应进入消费者肚子的美味,还没走到销售环节就已经腐烂了。
对被扔掉的食品而言,垃圾桶并不是它们生命的结束,而是另一种“新生”的开始:它们被运到垃圾填埋场,经过掩埋与焚烧后,以二氧化碳、甲烷的形式重新回到人们的生活之中。
据联合国估计,全球每年约有1/3的食物在生产与消费过程中被损失和浪费,因浪费食物造成的温室气体排放约占全球温室气体排放量的8%。
新鲜在左,腐烂在右
与分散在千家万户饭桌上的食物浪费相比,减少供应端的食物浪费在理论上更可控,因为食物浪费于他们意味着利润减少,他们更有动力干预食物浪费。
零售端的食物浪费中,以生鲜尤甚。管理新鲜果蔬需要实现一种微妙的平衡,店家要储备足够的胡萝卜、草莓、生菜和其他产品来满足需求,但如果订货数量超出顾客实际所需,他们就得蒙受腐烂食品带来的损失。
消费者购买生鲜食品很简单,如果Ta想做个西兰花炒虾仁,只需找到一家超市,然后把货架上的西兰花放到自己的购物篮。但对超市来讲,“每天采购多少西兰花”是一个非常复杂的问题,因为它涉及很多变量:
▍首先,超市需要知道现有库存中西兰花的数量以及每件的剩余保质期;
▍接下来,他们需要预测相关时间范围内对西兰花的需求;
▍此外,他们还要考虑西兰花的运输频率和保质期、货架的保鲜力、当前和计划的促销活动以及店员可用性。
毫无疑问,生鲜管理对零售商是个巨大的挑战。
然而实际生活中,你可以看到一些果蔬店主借助纸笔记录,并仅凭直觉做出重要决定;
你也可以看到一些以创新性著称的超市,使用依赖永续库存模型和自动订单履行的计算机辅助订购(CAO)系统,对可以储存六个月的薯片和保质期按天计的蓝莓一视同仁。
这些过时做法,每年造成了大量食物浪费和利润损失。
AI与食物浪费的斗争
事实上,生鲜管理虽然很难,但并非不可能。
位于美国旧金山的AI公司Afresh,基于人工智能和机器学习算法推出生鲜操作系统,对每件新鲜商品的复杂动态进行优化,以生成最佳订单推荐。
该系统搭载杂货商现有系统,获取销售、定价和发货数据后,将其编译到一个单一界面,供写订单的零售商通过平板电脑查看。
它利用机器学习从复杂的数据中提供建议,例如每日变化的客户需求、不断变化的产品成本、零售价格波动、季节性、销售策略,甚至每个特定商品的易腐烂程度。
Afresh还建立了一个置信度评分系统来每天评估输入数据的质量。每当数据质量得分较低时,系统会提示用户手动输入他们认为适合商店订购的数量。使用Afresh前端工具的人员会定期手工清点库存,这有助于训练AI驱动的模型。
通过其独特的人工智能和机器学习功能,零售商能够对需求、库存和消费者购买行为的变化做出响应,以盈利的方式运营生鲜部门。
Afresh正在帮助美国多家零售商每年订购数十亿美元的易腐食品,同时减少了25%的缺货问题和80%的食物浪费。迄今为止,该公司已经消除了690万磅的食物浪费,而且这个数字还在成倍增长。
可以看到,作为人工智能的一个分支,机器学习正深入到各行各业,在全社会范围内制造颠覆性变革。
许多组织都渴望利用AI为生产力赋能,但AI转化为真正的价值并不像打开一个开关那样容易,尤其随着大规模参数级应用涌现,AI对IT设施提出更高要求,基础架构的性能表现一定强弱程度上影响了AI的落地时间。
在复杂的环境中,选择一个值得信任的供应商至关重要。
戴尔科技集团拥有完备的AI就绪解决方案,涵盖服务器、网络、存储、工作站、相关软件和咨询培训服务等众多技术组合,可以帮助企业快速部署人工智能模型训练平台打造符合自身业务发展的人机协同场景,优化资源配置提升生产效率。
同时,戴尔易安信PowerScale是适用于高性能机器学习和大规模深度学习的全闪存基础架构,凭借可实现低延迟、高吞吐量和大规模并行I/O的卓越功能,从存储方面为用于AI工作负载的GPU加速计算提供了有益补充,可有效地压缩针对多PB数据集训练和测试分析模型所需的时间。
*PowerScale由英特尔至强处理器提供支持,该处理器采用软件定义的基础设施和敏捷云架构,为PowerScale提供了卓越的性能和效率,可加速要求严苛的文件工作负载,使企业发挥数据资本的价值,加速业务的数字转型。
这款简单又灵活的解决方案消除了I/O瓶颈,可在满足法规和企业政策要求的同时加快学习周期,让您的AI设想更快成为现实。
写在最后
我们从小就被教育要节约每一粒粮食,食物浪费不仅仅是对投入其中的种子、化肥、劳动力和金融资本等宝贵资源的践踏,更会让地球付出昂贵代价。
食物的最终归宿不该是垃圾场,而是填满餐盘,滋养人们的身体。遏制食物浪费,光靠AI等技术手段还不够,我们每个个体更要树立珍惜食物的意识,造福自身,造福地球。
好文章,需要你的鼓励
博通宣布对VMware Cloud Foundation平台进行重大升级,将私有AI服务集成到核心订阅中,并为vSAN存储虚拟化软件添加云原生对象存储支持。此举旨在满足企业对简化基础设施、高效AI采用和网络安全的需求。升级包括与英伟达合作的VMware Private AI Foundation服务、支持AMD GPU、Amazon S3兼容对象存储、与Canonical合作的Ubuntu容器镜像,以及新的四阶段自动化安全流程。博通还推出了面向高监管行业的VCF网络合规高级服务。
清华大学等多家机构研究团队完成了语音分离技术的全面调研,系统梳理了从传统方法到深度学习的技术演进。研究揭示了"鸡尾酒会问题"的核心挑战,分析了各种学习范式和网络架构的优劣,并通过统一实验框架提供了公平的性能基准。调研涵盖了实时处理、轻量化设计、多模态融合等关键技术方向,为学术界和产业界的技术选型提供了重要参考,推动语音分离从实验室走向实际应用。
Google正式发布Gemini 2.5 Flash Image模型,该模型此前在测试版中被称为nanobanana。新模型为企业创意项目提供更多选择,能够快速修改图像外观并提供比以往模型更强的控制能力。该模型在保持人物相似度和编辑一致性方面表现出色,支持多轮编辑、照片融合等功能,并已集成到Gemini应用中供付费和免费用户使用。
浙江大学和腾讯微信视觉团队发现AI图片生成训练中"时机胜过强度"的重要规律,开发出TempFlow-GRPO新方法。通过轨迹分支技术精确评估中间步骤,结合噪声感知权重调整优化不同阶段的学习强度,将训练效率提升三倍,在复杂场景理解方面准确率从63%提升至97%,为AI训练方法论带来重要突破。