数据集成和管理供应商 Informatica 加强了其智能数据管理云平台 (IDMC) 与 Databricks 数据智能平台的集成,包括对 AI 函数的支持。
Databricks 提供智能数据仓库服务,随着生成式 AI 热潮带来越来越多需要处理的数据,其业务正在飞速发展。去年年底,该公司筹集了 100 亿美元资金,最近又通过债务融资贷款获得了 50 亿美元,使其总融资额达到 190 亿美元。Informatica 的数据提取、转换和加载 (ETL) 以及数据管理和治理产品,帮助将高质量数据导入 Databricks 用于 AI 训练和推理。
Informatica CEO Amit Walia 表示:"我们在 Databricks 相关业务方面取得了显著成功,业务快速增长,为武田制药、毕马威和 Point72 等客户带来了重要的业务成果。"
他说:"与 Databricks 合作的一个关键优先事项是帮助客户构建企业级生成式 AI 应用。这些应用利用高质量、可信的企业数据,在遵守企业数据治理政策的同时,提供具有丰富业务背景和深度行业语义理解的高影响力生成式 AI 应用。"
Databricks 产品高级副总裁 Adam Conway 补充道:"作为云原生、AI 驱动的数据管理领导者,Informatica 是我们的重要合作伙伴,支持从数据集成和转换到数据质量、治理和保护的所有方面。"
Databricks AI 函数是内置的 SQL 操作,允许客户直接对数据应用 AI。Informatica 的原生 SQL ELT 通过无代码数据管道支持 Databricks AI 函数,为无代码用户开放 Databricks 生成式 AI 功能。Databricks AI 函数使客户能够直接通过 SQL 在客户数据上使用生成式 AI 功能,包括情感分析、相似度匹配、摘要生成、翻译和语法纠正。
新的 Informatica 原生 SQL ELT for Databricks 使得"下推"数据管道成为可能,提供 50 多个开箱即用的转换功能,并支持 250 多个原生 Databricks SQL 函数。
去年 6 月,Informatica 将其 AI 驱动的 IDMC 集成到 Databricks 数据智能平台中。Informatica 的 Databricks DBRX 生成式 AI 解决方案蓝图为客户使用 Databricks DBRX 开发检索增强生成 (RAG) 生成式 AI 应用提供了路线图。原生 Databricks SQL ELT 使联合客户能够在 Databricks SQL 上执行具有完整下推功能的数据库内转换。
Informatica 在 Databricks Partner Connect 上的 CDI-Free 产品为客户提供了访问 Informatica 云数据摄取和转换功能的途径。其 IDMC 平台已通过 Databricks Unity Catalog 验证。
总的来说,Informatica IDMC 平台包含多个针对 Databricks 优化的功能,如 300 多个数据连接器、创建低代码/无代码数据管道的能力、数据摄取和复制,以及通过 Informatica 的 CLAIRE GPT 和 CLAIRE copilot 提供的生成式 AI 驱动自动化。
在 Informatica 2025 财年第三季度,收入同比增长 3.4% 至 4.225 亿美元。其每月处理的云交易量超过 101 万亿次,Walia 表示:"这一成就反映了我们对产品创新、以客户为中心的承诺,以及我们成为数据和 AI 领域瑞士角色的目标。我们看到 AI 驱动的数据管理用例势头强劲。"
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。