未来 12-18 个月,AI 概念验证将演变为突破性技术。这一进展将得益于对庞大私有数据的访问和利用能力,这些数据量是互联网可用数据的 9 倍。克服访问这些数据的挑战对实现 AI 的真正潜力至关重要。
AI 中数据的不可或缺作用
快速且可访问的数据是成功 AI 的基石。如果无法以可用格式无缝可靠地访问数据,AI 开发和部署的根基就会崩塌。
现实是,组织数据分散在多个平台和位置,跨越了 AWS 和 Microsoft 等主流生态系统的边界。AI 应用需要强大可靠的网络来确保一致的延迟、性能和实时数据交换。因此,连接性成为释放这些分散数据源价值的关键。
董事会经常忽视连接性的重要性,错误地认为它"理所当然"。这种疏忽可能会对 AI 计划造成灾难性后果。即使是配备强大计算能力的最先进 AI 应用,也可能因为 10 毫秒的数据检索延迟而瘫痪。在 2025 年,在没有强大连接性策略的情况下部署 AI 不仅是一个错误,更是一个会带来严重后果的战略失误。
云计算争议重现
连接性挑战凸显了专门支持 AI 需求的新一波云计算模型的关键需求。这重新引发了关于云计算未来的更广泛讨论。
AI 模型与传统软件应用有根本的不同。早期云基础设施无法处理 AI 的巨大规模和复杂性,包括其数十亿个参数和持续的实时数据流。这需要云设计和支持基础设施进行范式转变,以充分释放 AI 的潜力。
虽然由地理分布式网络实现的安全性、连接性和弹性仍然是基础,但在公有云中运营的成本攀升正迫使组织重新评估对 AWS 和 Microsoft 等供应商的依赖。工作负载向私有云回迁的激增凸显了标准化数据迁移流程的关键需求,以确保平稳高效的转型。
标准在 AI 优化中的作用
AI 的云迁移挑战类似于更换银行账户的复杂性。正如银行法规简化了这一流程,关于云迁移的立法指导可能成为组织的重大变革。通过建立标准化的数据迁移实践,组织可以更轻松地采用完全适合其 AI 需求和更广泛业务目标的混合云模型。
面对日益分布式的 AI 工作负载,标准化方法至关重要。它不仅会加速 AI 采用和培养最佳实践,还会随着市场的成熟巩固 AI 领导者的地位。
提升认知和协作
AI 对基础设施日益增长的需求要求技术行业提高对连接性、云模型和更广泛生态系统相互作用的认识。在现实世界中成功实施 AI 需要组织、供应商和合作伙伴之间的强有力协作。
在这个 AI 新时代,连接性和云计算考虑因素不再是次要关注点 - 它们是成功的基础。通过在规划和执行中优先考虑这些因素,企业可以有效应对 2025 年及以后的复杂挑战。
好文章,需要你的鼓励
这项研究介绍了Ankh3,一种创新的蛋白质语言模型,通过多任务预训练策略显著提升了模型性能。研究者采用两种互补任务:多掩码概率的掩码语言建模和蛋白质序列补全,使模型仅从蛋白质序列就能学到更丰富的表示。实验表明,Ankh3在二级结构预测、荧光预测等下游任务中表现优异,尤其在模型未曾训练过的任务上展现出强大泛化能力,为蛋白质设计和分析开辟了新路径。
法国波尔多大学研究团队开发了一个突破性框架,用于神经退行性痴呆症的差异化诊断。该框架将3D脑部MRI转换为文本报告,并利用强化学习优化的大语言模型进行详细诊断推理。不同于传统"黑箱"方法,这一系统能生成透明、有因果关系的解释,同时保持高诊断准确率。研究显示,通过群组相对策略优化(GRPO)训练的轻量级模型能展现复杂推理行为,包括假设检验和非线性思考,提供与临床决策流程一致的排序诊断结果。
这项研究提出了CLUE框架,首次能够生成自然语言解释来揭示AI事实核查系统不确定性的来源。与现有方法不同,CLUE能识别文本片段间的冲突与一致关系,并解释它们如何影响模型的预测不确定性。实验表明,CLUE生成的解释在三种语言模型和两个事实核查数据集上都更忠实于模型不确定性,用户评价其更有帮助、信息更丰富、冗余更少且逻辑更一致。CLUE不需要微调或架构更改,适用于任何白盒语言模型,为事实核查提供了实用支持。
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。