未来 12-18 个月,AI 概念验证将演变为突破性技术。这一进展将得益于对庞大私有数据的访问和利用能力,这些数据量是互联网可用数据的 9 倍。克服访问这些数据的挑战对实现 AI 的真正潜力至关重要。
AI 中数据的不可或缺作用
快速且可访问的数据是成功 AI 的基石。如果无法以可用格式无缝可靠地访问数据,AI 开发和部署的根基就会崩塌。
现实是,组织数据分散在多个平台和位置,跨越了 AWS 和 Microsoft 等主流生态系统的边界。AI 应用需要强大可靠的网络来确保一致的延迟、性能和实时数据交换。因此,连接性成为释放这些分散数据源价值的关键。
董事会经常忽视连接性的重要性,错误地认为它"理所当然"。这种疏忽可能会对 AI 计划造成灾难性后果。即使是配备强大计算能力的最先进 AI 应用,也可能因为 10 毫秒的数据检索延迟而瘫痪。在 2025 年,在没有强大连接性策略的情况下部署 AI 不仅是一个错误,更是一个会带来严重后果的战略失误。
云计算争议重现
连接性挑战凸显了专门支持 AI 需求的新一波云计算模型的关键需求。这重新引发了关于云计算未来的更广泛讨论。
AI 模型与传统软件应用有根本的不同。早期云基础设施无法处理 AI 的巨大规模和复杂性,包括其数十亿个参数和持续的实时数据流。这需要云设计和支持基础设施进行范式转变,以充分释放 AI 的潜力。
虽然由地理分布式网络实现的安全性、连接性和弹性仍然是基础,但在公有云中运营的成本攀升正迫使组织重新评估对 AWS 和 Microsoft 等供应商的依赖。工作负载向私有云回迁的激增凸显了标准化数据迁移流程的关键需求,以确保平稳高效的转型。
标准在 AI 优化中的作用
AI 的云迁移挑战类似于更换银行账户的复杂性。正如银行法规简化了这一流程,关于云迁移的立法指导可能成为组织的重大变革。通过建立标准化的数据迁移实践,组织可以更轻松地采用完全适合其 AI 需求和更广泛业务目标的混合云模型。
面对日益分布式的 AI 工作负载,标准化方法至关重要。它不仅会加速 AI 采用和培养最佳实践,还会随着市场的成熟巩固 AI 领导者的地位。
提升认知和协作
AI 对基础设施日益增长的需求要求技术行业提高对连接性、云模型和更广泛生态系统相互作用的认识。在现实世界中成功实施 AI 需要组织、供应商和合作伙伴之间的强有力协作。
在这个 AI 新时代,连接性和云计算考虑因素不再是次要关注点 - 它们是成功的基础。通过在规划和执行中优先考虑这些因素,企业可以有效应对 2025 年及以后的复杂挑战。
好文章,需要你的鼓励
Mistral AI 和艾伦人工智能研究所发布了新的开源大语言模型。Mistral Small 3 拥有 240 亿参数,可在某些 MacBook 上运行。AI2 的 Tülu 3 405B 是基于 Meta 的 Llama 3.1 405B 模型改进而来。两个模型都声称在各自类别中处于领先地位,并以开源许可发布。
本文介绍了6个在2025年值得关注的数据中心相关缩写词,包括ARM处理器架构、裸金属即服务(BMaaS)、卷积神经网络(CNN)、NVIDIA新一代GPU GB200、后量子加密(PQC)以及UPS即服务(UPSaaS)。这些缩写词反映了数据中心领域的创新趋势,涉及AI、量子计算、基础设施服务等热点技术。
人工智能正在彻底改变研发领域。从解决复杂数学问题到发现新型抗生素,AI 已经展现出强大的科研能力。这种变革不仅提高了研究效率,还使得一些之前无法解决的问题成为可能。然而,如何有效实施 AI 技术、处理数据质量问题以及探索智能代理 AI 的潜力,仍是未来研发领域面临的重要挑战。
随着人工智能概念验证向突破性技术演进,访问和利用海量私有数据将成为关键。文章探讨了数据在人工智能中的核心作用,强调了连接性的重要性,并重新引发了云计算模型的讨论。文章还指出了标准化在优化人工智能方面的重要性,以及提高认知和加强合作的必要性。