未来 12-18 个月,AI 概念验证将演变为突破性技术。这一进展将得益于对庞大私有数据的访问和利用能力,这些数据量是互联网可用数据的 9 倍。克服访问这些数据的挑战对实现 AI 的真正潜力至关重要。
AI 中数据的不可或缺作用
快速且可访问的数据是成功 AI 的基石。如果无法以可用格式无缝可靠地访问数据,AI 开发和部署的根基就会崩塌。
现实是,组织数据分散在多个平台和位置,跨越了 AWS 和 Microsoft 等主流生态系统的边界。AI 应用需要强大可靠的网络来确保一致的延迟、性能和实时数据交换。因此,连接性成为释放这些分散数据源价值的关键。
董事会经常忽视连接性的重要性,错误地认为它"理所当然"。这种疏忽可能会对 AI 计划造成灾难性后果。即使是配备强大计算能力的最先进 AI 应用,也可能因为 10 毫秒的数据检索延迟而瘫痪。在 2025 年,在没有强大连接性策略的情况下部署 AI 不仅是一个错误,更是一个会带来严重后果的战略失误。
云计算争议重现
连接性挑战凸显了专门支持 AI 需求的新一波云计算模型的关键需求。这重新引发了关于云计算未来的更广泛讨论。
AI 模型与传统软件应用有根本的不同。早期云基础设施无法处理 AI 的巨大规模和复杂性,包括其数十亿个参数和持续的实时数据流。这需要云设计和支持基础设施进行范式转变,以充分释放 AI 的潜力。
虽然由地理分布式网络实现的安全性、连接性和弹性仍然是基础,但在公有云中运营的成本攀升正迫使组织重新评估对 AWS 和 Microsoft 等供应商的依赖。工作负载向私有云回迁的激增凸显了标准化数据迁移流程的关键需求,以确保平稳高效的转型。
标准在 AI 优化中的作用
AI 的云迁移挑战类似于更换银行账户的复杂性。正如银行法规简化了这一流程,关于云迁移的立法指导可能成为组织的重大变革。通过建立标准化的数据迁移实践,组织可以更轻松地采用完全适合其 AI 需求和更广泛业务目标的混合云模型。
面对日益分布式的 AI 工作负载,标准化方法至关重要。它不仅会加速 AI 采用和培养最佳实践,还会随着市场的成熟巩固 AI 领导者的地位。
提升认知和协作
AI 对基础设施日益增长的需求要求技术行业提高对连接性、云模型和更广泛生态系统相互作用的认识。在现实世界中成功实施 AI 需要组织、供应商和合作伙伴之间的强有力协作。
在这个 AI 新时代,连接性和云计算考虑因素不再是次要关注点 - 它们是成功的基础。通过在规划和执行中优先考虑这些因素,企业可以有效应对 2025 年及以后的复杂挑战。
好文章,需要你的鼓励
博通宣布对VMware Cloud Foundation平台进行重大升级,将私有AI服务集成到核心订阅中,并为vSAN存储虚拟化软件添加云原生对象存储支持。此举旨在满足企业对简化基础设施、高效AI采用和网络安全的需求。升级包括与英伟达合作的VMware Private AI Foundation服务、支持AMD GPU、Amazon S3兼容对象存储、与Canonical合作的Ubuntu容器镜像,以及新的四阶段自动化安全流程。博通还推出了面向高监管行业的VCF网络合规高级服务。
清华大学等多家机构研究团队完成了语音分离技术的全面调研,系统梳理了从传统方法到深度学习的技术演进。研究揭示了"鸡尾酒会问题"的核心挑战,分析了各种学习范式和网络架构的优劣,并通过统一实验框架提供了公平的性能基准。调研涵盖了实时处理、轻量化设计、多模态融合等关键技术方向,为学术界和产业界的技术选型提供了重要参考,推动语音分离从实验室走向实际应用。
Google正式发布Gemini 2.5 Flash Image模型,该模型此前在测试版中被称为nanobanana。新模型为企业创意项目提供更多选择,能够快速修改图像外观并提供比以往模型更强的控制能力。该模型在保持人物相似度和编辑一致性方面表现出色,支持多轮编辑、照片融合等功能,并已集成到Gemini应用中供付费和免费用户使用。
浙江大学和腾讯微信视觉团队发现AI图片生成训练中"时机胜过强度"的重要规律,开发出TempFlow-GRPO新方法。通过轨迹分支技术精确评估中间步骤,结合噪声感知权重调整优化不同阶段的学习强度,将训练效率提升三倍,在复杂场景理解方面准确率从63%提升至97%,为AI训练方法论带来重要突破。