数据集成和管理供应商 Informatica 加强了其智能数据管理云平台 (IDMC) 与 Databricks 数据智能平台的集成,包括对 AI 函数的支持。
Databricks 提供智能数据仓库服务,随着生成式 AI 热潮带来越来越多需要处理的数据,其业务正在飞速发展。去年年底,该公司筹集了 100 亿美元资金,最近又通过债务融资贷款获得了 50 亿美元,使其总融资额达到 190 亿美元。Informatica 的数据提取、转换和加载 (ETL) 以及数据管理和治理产品,帮助将高质量数据导入 Databricks 用于 AI 训练和推理。
Informatica CEO Amit Walia 表示:"我们在 Databricks 相关业务方面取得了显著成功,业务快速增长,为武田制药、毕马威和 Point72 等客户带来了重要的业务成果。"
他说:"与 Databricks 合作的一个关键优先事项是帮助客户构建企业级生成式 AI 应用。这些应用利用高质量、可信的企业数据,在遵守企业数据治理政策的同时,提供具有丰富业务背景和深度行业语义理解的高影响力生成式 AI 应用。"
Databricks 产品高级副总裁 Adam Conway 补充道:"作为云原生、AI 驱动的数据管理领导者,Informatica 是我们的重要合作伙伴,支持从数据集成和转换到数据质量、治理和保护的所有方面。"
Databricks AI 函数是内置的 SQL 操作,允许客户直接对数据应用 AI。Informatica 的原生 SQL ELT 通过无代码数据管道支持 Databricks AI 函数,为无代码用户开放 Databricks 生成式 AI 功能。Databricks AI 函数使客户能够直接通过 SQL 在客户数据上使用生成式 AI 功能,包括情感分析、相似度匹配、摘要生成、翻译和语法纠正。
新的 Informatica 原生 SQL ELT for Databricks 使得"下推"数据管道成为可能,提供 50 多个开箱即用的转换功能,并支持 250 多个原生 Databricks SQL 函数。
去年 6 月,Informatica 将其 AI 驱动的 IDMC 集成到 Databricks 数据智能平台中。Informatica 的 Databricks DBRX 生成式 AI 解决方案蓝图为客户使用 Databricks DBRX 开发检索增强生成 (RAG) 生成式 AI 应用提供了路线图。原生 Databricks SQL ELT 使联合客户能够在 Databricks SQL 上执行具有完整下推功能的数据库内转换。
Informatica 在 Databricks Partner Connect 上的 CDI-Free 产品为客户提供了访问 Informatica 云数据摄取和转换功能的途径。其 IDMC 平台已通过 Databricks Unity Catalog 验证。
总的来说,Informatica IDMC 平台包含多个针对 Databricks 优化的功能,如 300 多个数据连接器、创建低代码/无代码数据管道的能力、数据摄取和复制,以及通过 Informatica 的 CLAIRE GPT 和 CLAIRE copilot 提供的生成式 AI 驱动自动化。
在 Informatica 2025 财年第三季度,收入同比增长 3.4% 至 4.225 亿美元。其每月处理的云交易量超过 101 万亿次,Walia 表示:"这一成就反映了我们对产品创新、以客户为中心的承诺,以及我们成为数据和 AI 领域瑞士角色的目标。我们看到 AI 驱动的数据管理用例势头强劲。"
好文章,需要你的鼓励
瑞典央行与金融机构及国家安全部门深化合作,共同应对网络威胁。今年5月,瑞典遭遇大规模分布式拒绝服务攻击,政府和金融机构受到严重冲击。总理克里斯特松承诺增加资金支持,建立更强大的公私合作伙伴关系。央行将举办第二届在线网络安全挑战峰会,鼓励金融机构提升网络安全能力。瑞典金融协会敦促建立危机管理机制,与国家网络安全中心等机构协调配合。
圣母大学研究团队发布了迄今最全面的大语言模型跨学科应用调研报告,系统梳理了AI在人文、商业、科学工程等13个领域的应用现状。研究发现,大语言模型在文本处理和模式识别方面表现优异,但在创造性思维和价值判断上仍有局限。报告强调人机协作是未来发展方向,并为不同需求用户提供了具体的模型选择建议。
工作压力源于大脑储存混乱而非系统。本文介绍5个ChatGPT提示词,帮你将工作压力转化为结构化行动:优先级排序任务清单、快速撰写专业邮件回复、从冗长文档中提取关键信息、生成问题解决方案、高效准备会议内容。通过系统化处理工作事务,将分散的精力转为专注执行,让大脑专注于决策而非重复劳动。
复旦大学团队开发的SIM-CoT方法突破了AI推理效率瓶颈,让机器学会在"脑海"中思考而非必须表达每个推理步骤。该方法通过巧妙的监督机制解决了隐式推理训练不稳定问题,在保持高效率的同时显著提升准确性,在GPT-2和LLaMA系列模型上均表现出色,为AI推理技术开辟新路径。