对于云原生开发,更重要的不是运行应用程序的位置,而是开发的方式。随着应用程序现代化和云原生开发越来越受到重视,现在对于企业开发者来说是个很有意思的时刻。针对混合云环境的关键成功因素(包括安全性、可靠性和可管理性),职责开始转移到应用程序。我发现,要解决这些“有意思”的挑战,最好是动用能够理解整个软件开发生命周期的协作式、跨学科 DevSecOps 团队。
在这种新的环境中,您作为开发者的角色更加严苛,我们都需要更好的工具。您的职责更加重大,需要就治理和相关管理政策,理解安全性工程师并直接与他们合作。您需要优先考虑服务的可靠性,最佳实践是在应用程序生命周期中及早地处理潜在问题。您还需要前瞻性地检测并解决生产环境的潜在问题,以免带来负面的业务影响。
DevSecOps 团队需要集成工具来自动执行耗时、易出错的管理任务,并提供资源、配置和应用程序的合并视图。团队必须就事实达成一致,并使用单一事实来源,前瞻性地管理混合云环境,以及时、非中断性的方式处理事件。
了解 IBM 和 Red Hat 在多云 DevSecOps 空间中一起实现的工作成果,这绝不会让您感到失望。我们理解您的具体工具需要以及您对于开放性和灵活性的全盘需求。IBM Cloud Pak for Multicloud Management V2 提供了一组开放式、可插拔的工具,支持组织安全地管理应用程序,无需考虑应用程序的架构方式和部署位置。利用这一最新解决方案,您现在可以与安全性和运营领域的团队成员一起协作来完成以下工作:
下面是我发现的 V2 中一些很有用的新功能,它们应该对于您和整个 DevSecOps 团队也很有用:
了解更多与IBM相关请访问:http://www.zhiding.cn/special/IBM_Hybrid_Cloud_Solutions
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。